From wave breaking to air-sea fluxes of mass, heat, and momentum via bubbles and sea spray

Sophia E. Brumer CNRS Post-Doc at the Laboratoire d'Aérologie, Toulouse (France) (sophia.brumer.work@gmail.com)

Laboratoire d'Aérologie

Current Work - Waves impacts on extra-tropical cyclones

Project **anr**[®] JCJC "WINDGUST" (PI: F. Pantillon)

Objectives:

- Better understand fine-scale processes responsible for the formation of gusts
- Explore the feedback of local processes on midlatitude cyclone dynamics

Approach:

- → Realistic coupled atmosphere-wave-ocean simulations
- → High-resolution (100 m 2.5 km)
- 2 case studies:

Previous Work - A coupled model framework with sea spray

LDEO Measurements : Ship-Based Visible Imaging Whitecap cover & breaking crest length distributions

Additional Measurements :

Wave field: Riegl Altimeter (continuous till station 4) Wave Rider buoy (on station) Meteorological and chemical fluxes (CO₂, DMS...)

St. Jude Day Storm

 wind sea dominated mixed seas

 Model hindcast closely mimics measureme nts

Wave dependent air-sea processes

Clayson et al (2020)

Whitecaps

Whitecap parametrizations (1971 – 2004)

Figure 1. Various parameterizations for $W(U_{10})$ relation.

Anguelova and Webster (2006)

Whitecap parametrizations (2007 – 2016)

Whitecap parametrizations – HiWinGS & SO GasEx Results

Ship-borne high freq. visible imaging (motion corrected)

Good agreement between the 2 datasets & with previous studies

HiWinGS

- \rightarrow extended validity to 25 m s⁻¹
- \rightarrow saturation beyond 20 m s⁻¹?

Brumer et al. (2017, JPO)

Whitecap parametrizations – HiWinGS & SO GasEx Results

Sea state dependence

- 1. wave steepness
 - a. mss
 - b. "Bulk"
- 2. Wave age

 $\ _{\rightarrow}\$ poor agreement between the 2 datasets & with previous studies

→ no improvement when considering only wind-sea partition

Brumer et al. (2017, JPO)

Whitecap parametrizations – HiWinGS & SO GasEx Results

Brumer et al. (2017, JPO)

Breaking crest length distributions (Λ)

Λ framework links breaking scales (length & velocity) to upper ocean TKE dissipation rates (*Philips 1985*)
+ bubble flux (Deike et al. 2017)

NB: different image analysis techniques used by the different groups

HiWinGS

- much younger seas and higher winds than previously
- Poor fit to scaling proposed in literature

Breaking crest length distributions (Λ)

Λ framework links breaking scales (length & velocity) to upper ocean TKE dissipation rates (*Philips 1985*)
+ bubble flux (Deike et al. 2017)

NB: different image analysis techniques used by the different groups

HiWinGS

- much younger seas and higher winds than previously
- Poor fit to scaling proposed in literature

Brumer and Zappa (2020)

Gaz transfer

The k-conundrum

Garbe et al., (2014)

Single parameter parametrization – CO_2

4 distinct open ocean data sets

Large discrepancies in trends:

- GasEx-98 & SO GasEx close to cubic U_{10N} dependence
- HiWinGS & Knorrll lower than quadratic dependence

Single parameter parametrization – CO_2

Single parameter parametrization – DMS

3 distinct open ocean data sets

- near linear dependence for all
- SO GasEx lower than HiWinGS at all wind speeds
- outliers at U_{10N} > 15 m s⁻¹ in SO GasEX and Knorr11 datasets

Single parameter parametrization - DMS

Single parameter parametrization - DMS

- Similar performance of sea state dependent and wind-only param.
- DMS more soluble than CO₂
 - → bubble mediated transfer less important

Mechanistic models

NOAA-COAREG (Blomquist et al. 2017, Fairall et al. 2022):

NOAA-COAREG (Blomquist et al. 2017, Fairall et al. 2022):

$$k = \left[\left(k_w + k_b \right)^{-1} + s k_a^{-1} \right]^{-1}$$

Friction Velocity Whitecap Coverage

Deike and Melville (2018); Reichl and Deike (2020):

$$k_{\rm w}^{\rm simple} = k_{\rm nb} + k_{\rm b}^{\rm simple}$$
, with $k_{\rm b}^{\rm simple} = \left[\frac{A_{\rm B}}{\alpha} \left(u_*^{5/3} \sqrt{gH_s}^{4/3}\right)\right] \left(\frac{Sc}{660}\right)^{-1/2}$

Alternative functional form:

$$k = k_{\varepsilon} + k_{b}$$

TKE Dissipation Rate

Whitecap Coverage & Volume of Air Entrained by Bubbles

Mechanistic models – COAREG & A dependent

Brumer and Zappa (2020)

Impact of Langmuir cells

Langmuir cells enhance the contribution from bubbles by keeping them under water for longer thus increasing their dissolution

Chiba and Baschek (2010) model depending on:

- active white cap coverage
- duration of wave breaking,
- injected void fraction as function of depth and wave height
- cell sizes
- dowelling velocities

Impact of Langmuir cells

Langmuir cells enhance the contribution from bubbles by keeping them under water for longer thus increasing their dissolution

Chiba and Baschek (2010) model depending on:

- active white cap coverage
- duration of wave breaking,
- injected void fraction as function of depth and wave height
- cell sizes
- dowelling velocities

Bubbles

Czerski et al. (2022)

Czerski et al. (2022): "It has proven challenging to develop a robust relationship between sea state, water conditions and a quantitative description of subsurface bubble plumes."

In situ measurements are rare and don't give the whole picture: shallow and deep plumes, horizontal advection, Langmuir entrainment

Probability distribution of void fraction at 2m depth

- Very similar below wind speeds of 16 m s⁻¹ or a wind-wave Reynolds number of 2 x 10⁶ in all conditions
- Increases significantly above either threshold.

Probability distribution of void fraction at 2m depth

- Very similar below wind speeds of 16 m s⁻¹ or a wind-wave Reynolds number of 2 x 10⁶ in all conditions
- Increases significantly above either threshold.

Void fractions at 2 m depth

- significantly different during periods of rising and falling winds
- no distinction with wave age

Sea Spray

Types of sea spray

R Veron F. 2015. Annu. Rev. Fluid Mech. 47:507–38

- Bubble-Generated
 - Film Drops ($r_0 = 0.01-2 \mu m$)
 - Jet Drops ($r_0 = 2-200 \ \mu m$)
- Spume Drops ($\tilde{r}_0 = 10-2300 \,\mu\text{m}$)

Sea Spray Aerosols

Sea Spray Aerosols Source Functions

Wave dependent parameters considered:

- Whitecapping (Shi et al., 2020; Hartery et al., 2020)
- Wave age (Varlas et al., 2021)
- Wave Steepness (Bruch et al. 2021)
- Wave dependent Reynold
 numbers
 (Nerriset of 2017) Our deputite at al. (2017). Shi at al.

(Norris et al. 2013; Ovadnevaite et al. (2014); Shi et al., 2016; Bruch et al. 2021)

Radius at 80% RH, R_{80} , or ambient, Ramb, or dry diameter, Dp [µm]

Ovadnevaite et al. (2014)

Rising vs Falling winds

Breaking Wave Experiment: BREWEX on-board FLIP

- U10 ranging between 1.9 and 15.6 m/s
- Simultaneous measurements of:
 - o sea spray aerosol (∑F)
 - Wind waves dissipation (Et)
 - microwave brightness temperature (Tb)
 - underwater acoustic (P) → bubble detachment or splitting ("screaming infant microbubbles")

→ Distinct properties in rising winds (red)

& falling winds (blue)

- → Higher SSA volume in falling winds / older seas

Rising vs Falling winds

- length scale of wave breaking shorter in mixed seas than in wind seas
- Breaking more violent in rising winds
 - $_{\rightarrow}\,$ entrains larger air cavities
 - → short lifetime
 - → not broken down to smaller bubbles
 - \rightarrow inefficient SSA generation
- Wind wave TKE dissipation is not a good candidate for single-variable parameterization

Hwang et al. (2019) 39

Water to Air Plastics Exchange

Negative mass balance of entering (4-13 Tg/y) vs. detected marine plastic debris (0.3 Tg)

→ "missing" plastic (Eriksen et al. 2014)

Air mass back trajectories consistent with local emissions in remote marine atmosphere (North Atlantic) → Sea Spray ejection of plastics (Trainic et al. 2020)

Brahney et al. (2021)

anr[®]BubblePlast

GOALS:

- 1. Qualitative and quantitative characterization of water-to-air transfer of MP/NPs
- 2. Improve atmospheric and ocean models of MPs/NPs, and their coupling

Evaluate the influence of waves on MPs and NPs surface concentrations Test and adapt sea state vs. wind-only ocean-atmosphere SSA source functions for MPs/NPs

Dropplets

Sea Spray Generation Functions

More recent ones varying shape spectrum

 $\frac{dF}{dr_0} = f_1(U_{10}, W, \dots) f_2(r_0)$ Size Spectrum Dependence on environmental parameters

Environmental parameters considered:

- Wind speed or friction velocity (e.g. Fairall et al., 1994)
- Wave Breaking Dissipation (Fairall et al., 2009; Lenain & Melville, 2017; Deike, 2021, Barr et al. 2022)
- Whitecapping (Shi et al., 2020)
- Wave dependent Reynold numbers / wave age (Troitskaya et al., 2018)

NB:

- Scarce in situ measurements for $r_0 > 20 \ \mu m$ Scaling of results of lab experiments not straightforward

Sea Spray Generation Functions

More recent ones varying shape spectrum

 $\frac{dF}{dr_0} = f_1(U_{10}, W, \dots) f_2(r_0)$ Size Spectrum Dependence on environmental parameters

Environmental parameters considered:

- Wind speed or friction velocity (e.g. Fairall et al., 1994)
- Wave Breaking Dissipation (Fairall et al., 2009; Lenain & Melville, 2017; Deike, 2021, Barr et al. 2022)
- Whitecapping (Shi et al., 2020)
- Wave dependent Reynold numbers / wave age (T18) (Troitskaya et al., 2018)

NB:

- Scarce in situ measurements for $r_0 > 20 \ \mu m$ Scaling of results of lab experiments not straightforward

Sea spray impacts on heat fluxes

Sea spray impacts on heat and momentum fluxes

Coupled wave-atmosphere simulations of an idealize translating vortex

Following Bao et al. (2011)

- Sea Spray increases intensity for all SSGFs
- Distinct impacts on heat fluxes, mostly enhanced but for T18

Exploratory Project IDEA

Goals :

- Evaluate the benefits of introducing sea spray explicitly into microphysical schemes, as opposed to current surface schemes.
 - → coupled ideal & realistic simulations WAVEWATCH-MesoNH with LIMA
 - → adapting sea spray param.
- 2. Sample the full size distribution of sea spray as an extension to ongoing aerosol sampling onboard the Marion-Dufresne (MAP-IO project)
 - → OBSAUSTRAL 2024 (11 jan. 08 mar.)

Exploratory Project IDEA

OBS-Austral 2024

METEO

Going Beyond

Coupled modeling

• Insure coherent

- measured and modeled sea state parameters & breaking statistics
- coupling strategy in terms of spatio-temporal resolution & parametrizations
 - Measurements & bulk approach assume homogeneity over ~15 minutes & fetch dependent footprint (not really quantified)
 - Used in climate to 100 m scale atmospheric modeling
- Improve practical **mechanistic models**

• Seek appropriate **coupling variables** to better represent variability (beyond Hs, Tp, alpha)

Observations

- More **comprehensive** field observations targeting varied geophysical conditions; wave & breaking measurements are still too often excluded
- Unifying measurements and analysis techniques

Revisiting historic datasets complemented by wave model hindcasts

Observations

- multi-year suites of measurements at specific locations to simultaneously
- characterize physical and biogeochemical processes at high spatial and temporal resolution

Thank you!