

Wave ensemble forecasting with a regional coupled system

Vivian Fraser-Leonhardt, Ségolène Berthou , Juan Castillo , Christopher Bunney, Breogan Gomez

Aim

Aim: To have the Fully coupled ensemble to be a candidate for forecasting Focus: Analysing and improving the accuracy of forecasting Significant wave height(HS) and Wind Speed (U10).

Outline

Background:

- Regional coupled suite
- Ensembles
- Some results showing the impact of coupling with waves (Wind speed and SSTs)
- Brief description on the operational forecasting and coupled system

Project: Analysing the accuracy of forecasting HS and U10

- Operation wave models (Atlantic wave ensemble and AMM15) vs Fully coupled ensemble (Background, HS, and WS)
- Sensitivity tests:
 - Increasing coupling frequency (from 1 hour \rightarrow 10 minutes)
 - Reduction Betamax parameter (1.48 \rightarrow 1.39)
 - Converting from 10-meter winds to 10-meter neutral wind

Regional Coupled Suite (RCS)

Regional coupled model (for this project): Atmosphere (UM, 13.0), Land (JULES, 7.0), Ocean (NEMO, 4.0.4) and Waves (WWIII, 7.12)

Regional Coupled Team

RCS team (Foundation Science, RMED)

Ségolène Berthou (scientific manager, river dev)

Alex Arnold (ocean & climate)

Juan Ma Castillo (software engineer – architect of Regional Coupled Suite, coupling expertise, LFRic)

Vivian Fraser-Leonhardt (industrial placement, waves & winds)

Huw Lewis (former scientific manager, coarchitect of Regional Coupled Suite, river dev)

Sana Mahmood (coupled ensembles, links with Bristol University)

Claudio Sanchez (Atmosphere/ocean coupling, cyclones, tropics, K-scale, Chemistry&aerosol)

+ Momentum partners

Plymouth Marine

Laboratory

National

Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

Background

Centre for

Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCI

Segional Coupled Suite: Domains

Across UM and UK partners

Running configuration Configuration in development (porting required first)

Background

So far: Ensemble forecasting

Decrease in forecasting skills are due to:

- 1. Uncertainties in the initial conditions
- 2. Approximations used in the forecast models

Coupled ensemble comes from MOGREPS-UK which inherits the perturbations of MOGREPS-G

Spread:

- 1. Boundary conditions: LBC and IC
- 2. Stochastic physics
- 3. Inflated spread in the ST

Background

Met Office So far: Impact of wave coupling on Wind Speeds | ... SST

Operational and the fully coupled systems

	Atlantic wave ensemble (oper)	AMM15 (oper)	Fully coupled
Members	18	1	18
Resolution	25km, 12km, 6km, 3km	3km, 1.5km	2.2km
Model	Wave only	Ocean-wave	Atmosphere-Land-Ocean- Wave
Domain	North Atlantic	AMM15 (like UKV)	UKV
Driven by	MOGREPS-G	glm (NWP global fc)	MOGREPS-UK

Background

- Buoy bias towards the coast and the Northern North Sea (oil rigs)
- This is the UKV and AMM15 domain

Background

Met Office Operational vs Ensemble HS and WS timeseries

UK Mean bias - 20230731-20230805 (storm Patricia)

• AMM15: -----

Met Office Operational vs Ensemble HS and WS timeseries

UK Mean bias - 20230731-20230805 (storm Patricia)

• AMM15: -----

Sensitivity tests

1. Increasing in coupling frequency (from 1 hour \rightarrow 10 minutes)

2. Reduction in the Betamax parameter (1.48; IFS \rightarrow 1.39; Operational Met Office)

3. Converting from 10-meter winds to 10-meter neutral wind speeds

Sensitivity Test 1: Reduction in coupling frequency (from 1 hour → 10 minutes) _ HS(m) - (20230731-20230804) _ 126 **Met Office** 1e6 UK Mean Bias (storm Patricia) 3.0 0.8 ens aow 10min - ens aow reference 6 Significant wave height (m) 2.8 0.6 (m) 2.6 Regresion: HS<2: 0.4 Regression: HS>2: wave 0.2 Significant v 0.7 0 0.0 1:1 -0.2 Linear Regression Hs < 2</p> Linear Regression Hs > 2 1.8 -0.4 6 7 1.6 2023-07-31 2023-08-01 2023-08-02 2023-08-03 2023-08-04 2023-08-05 00 00 00 00 00 00 Time Time [20230731 - 20230804] Wind Speed(ms⁻¹) - (20230731-20230804) **UK Mean Bias (storm Patricia)** 17.5 -600000 ens aow 10min 15.0 s aow reference 10-meter wind speed (m s^{-1}) 10 500000 12.5 з Regresion: WS<10 Wind speed (m/s) 400000 Regression: WS>10: 75 300000 5.0 200000 2.5 100000 -2 Linear Regression WS < 10 -3 0.0 Linear Regression WS > 10 2023-07-31 2023-08-01 2023-08-02 2023-08-03 2023-08-04 2023-08-05 0.0 2.5 5.0 10.0 12.5 15.0 17.5 00 00 00 00 00 00 Time [20230731 - 20230804] Time 1h ensemble member: • 10min member: Individual ensemble members — — — • .

\gg Met Office Sensitivity Test 2: Reduction in the Betamax (1.48 \rightarrow 1.39)

 \sim

- 10min member: •
- 10min + operational Betamax: •

Met Office Sensitivity Test 3: 10-meter neutral winds

- 10min member: •
- 10min + neutral winds:

Set Office What combination is best?

The 'filled' points are plotted when a model provides a significance level of 5%, with a student t-test.

'Best model' (BIAS)	HS (m)	Wind Speed (m s^{-1})
1 st	10 minute + neutral winds	10 minute + neutral winds
2 nd	10 minute + new betamax	1 hour (original)

Future plans

- Further examination on how the ensemble behaves with different parameters (e.g SST)
- Further analysis on the cases studies: different areas of the western European continental shelf
- Experimenting with the Betamax parameter
- AOW: Running 10 year hindcast climate run and developing a future 2060-2070 run
- Capri project (UEA and Met Office): Looking at the impact of wave and current coupling on mesoeddies and tidal currents, using FAAM-aircraft observations; 15meters above sea level.

Image taken inside FAAM (flying 15 meters above sea level)

Source Met Office Conclusion

The fully coupled system has similar skills in forecasting HS and wind speed.

Sensitivity test results:		HS	Wind Speed
-	1hour -> 10 min coupling frequency	Extreme: Small decrease Calm: Negligible	Extreme: Small decrease Calm: Small increase
	1.48 → 1.39 Betamax	Extreme: Slight decrease Calm: Negligible	Extreme: Slight increase Calm: Negligible
	10m winds \rightarrow 10m neutral winds	Case dependent	Case dependent

Despite the degradation we will adopt all three-sensitivity test (to help forecast high-frequency events, for consistency in the Met Office, and to better conserve momentum).

The best model configuration for forecasting HS and wind speed is the 10-minute coupling frequency with neutral winds (At least around the coast and Northern North Sea).

Thank you for listening

Email:

Met office: vivian.leonhardt@metoffice.gov.uk University: V.Leonhardt@sms.ed.ac.uk

Further slides

Met Office Case study: Storm Patricia

AMM15:

Sensitivity tests:

Investigating the influence of coupled frequency (10min against 1h)

Investigating the effect of reducing the growth parameter (Betamax) value (from 1.48 to 1.39)

Regional-coupled model (for this project): Atmosphere (UM), Land (JULES), Ocean (NEMO) and Waves (WW/III)

Met Office Proposed intermediate operational implementation

So far: REP: air-wave-ocean interactions

Young, growing wind waves reduce the wind speed by increasing the sea-surface aerodynamic roughness

New RAL3 drag scheme

Met Office

(COARE4.0+Donalan cap) more similar to wave parameterization of drag coefficient. Wave/ocean coupling reduces wave error for extremes - OS43&44

50

Wave/ocean coupling increases ocean vertical mixing, which delays the spring phytoplankton bloom when coupling to biogeochemistry (ERSEM)

Storm Agnus (25 September) Storm Agnus (25 September)

Error (instability) \rightarrow allow_1h coupling in the atmosphere (could be initial conditions, boundary conditions or coupling; because it crashes on the first iteration).

Atmospheric time step was reduced and still crashed

The instability error – 10 min coupling

- To run this, the ocean timestep was forced from 100 to 60s.
- I believe that this is subharmonic instability due to time-periodic forcing, classic example being Faraday oscillations.

Note that this is not the case for storm agnus as the wind is coming from SW.

Met Office So far: Impact of wave coupling on wind speeds

Probability of wind speed > 10m/s (a, b), >20m/s (c, d) for atmosphere only (a, c), atmosphere-ocean-waves (b, d), e) shows the drag coefficient as a function of wind speed (for another case) for RAL3 (=atmosphere-only), Waves – ST4 terms (=AOW) and RAL2 (older model version).