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INTRODUCTION

In the context of the energy balance equation , we describe some recent progress in our

understanding of the interaction of wind and ocean waves. Starting point is the quasi-linear

theory of wind-wave interaction as introduced in WAM cycle 4 in 1991. This approach is still

used in a number of forecasting systems and we show that up to a wind speed of 25 m/s it gives

good results regarding the drag of airflow over the ocean.

Here, we would like to extend the wind-wave interaction approach to the case of strong

hurricane winds. Three new aspects are introduced:

• Determine the background roughness length from the stress exerted by the

gravity-capillary waves on the airflow

• Solve the stress balance equation in the vertical which results in a nonlinear wind input

source function. Nonlinearity is found to be important for wind speeds larger than 20-25

m/s.

• Extend theory to two dimensional propagation.
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The programme of this talk is as follows:

I will firstly briefly present the quasilinear theory of wind-wave interaction introduced in 1991

and discuss its quality. This approach produces too much drag for winds above 25 m/s. One of

the reasons of the large drag is the assumption of a constant background Charnock parameter.

In the new version of the wind-wave coupling this is replaced by a determination of the

background roughness from the unresolved gravity-capillary waves . Another reason is that

for large winds the waves become so steep that nonlinear effects on the growthrate of the

waves by wind become important and reduce the drag.

Consequences of these extensions of the theory are discussed and in contrast to the 1991

version of the theory for winds above 25 m/s the drag coefficient now decreases with wind

rather than showing an increase. This is a reflection of flow separation .

Details of the calculations and discussion, in particular regarding the extension to two

dimensions, may be found in ECMWF Tech Memo 882 and in our JPO paper “Wind-wave

interaction for strong winds”.

If time permits a brief discussion of effects of surface gravity waves on

heat and moisture flux is given at the end of the talk.
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THE 1991 VERSION OF WIND-WAVE INTERACTION

In the main part of this talk I would like to discuss the role of ocean waves in the momentum

transfer in the context of a coupled atmosphere-ocean wave model.

Starting from critical layer theory I will present results on the sea state dependence of the

momentum transfer and how well the resulting drag compares with observations.
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Quasilinear Theory of momentum flux :

According to critical layer theory waves with phase speed c grow when the curvature in the wind profile

U0(z) at the critical height is negative. Introducing the Doppler-shifted velocity W =U0(z)− c, where the

critical height zc follows from the condition W = 0, one finds

∂

∂ t
F(k)

∣

∣

∣

∣

wind

= γF(k), γ =−επc | χc |
2 W ′′

c

|W ′
c |

,

where the wave-induced vertical velocity χ satisfies the Rayleigh equation

W ∇2χ −W ′′χ = 0, χ(0) = 1, χ(∞) = 0.

Wave growth results in a slowing down of the airflow according to

∂

∂ t
U0 = (νa +DW )

∂ 2

∂ z2
U0 +

1

ρa

∂

∂ z
τturb, DW =

πω2 | χ |2

| c− vg |
F(k),

where the turbulent stress is modelled by means of a mixing length model, i.e.

τturb = ρal2

∣

∣

∣

∣

∂

∂ z
U0

∣

∣

∣

∣

∂

∂ z
U0, l(z) = κ(z+ zb),

while κ the von Kármán constant and zb a background roughness length.
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For given spectrum F(k) one may search for steady state solutions of the airflow over wind

waves by means of an iteration method. The rate of convergence of this procedure was judged

by calculating the total stress τtot = ρau2
∗

τtot = τv + τturb + τw,

where τv = ρaνa∂U0/∂ z and the wave-induced stress can be shown to be given by

τw =−
∫ ∞

z
dz DW

∂ 2

∂ z2
U0 =

∫

dk
∂ P

∂ t

∣

∣

∣

∣

wind

with wave momentum P = ρwgF(k)/c.

The wave spectrum is given by the JONSWAP spectrum with a Phillips parameter αp which is

assumed to depend in a sensitive manner on the wave age cp/u∗, i.e.

αp = 0.57(cp/u∗)
−3/2,

hence young wind waves (cp/u∗ = 5) are steep while old wind sea (cp/u∗ = 25) is a smooth.
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Figure 1: Effect of waves on wind profile for old and young windsea, shown by plotting dimensionless

wind speed U0/u∗ as a function of dimensionless height z∗ = gz/u2
∗. The wind profile parametrization

1/κ log(1+ z∗/z∗0) is denoted by a △.
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Figure 2: The wave age dependence of the drag coefficient for two different friction velocities.
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Parametrization

The numerical results suggest that air viscosity is not important so I start from the stress

relation τturb + τw = τ , or explicitely, with l = κ(z+ zb)

l2

∣

∣

∣

∣

∂U0

∂ z

∣

∣

∣

∣

∂U0

∂ z
+ τw(z) = τ .

In principle one could try to solve this differential equation for wind velocity with boundary

condition U0(z = 0) = 0 if one knows the wave-induced stress τw. However, things turn out to

be simpler if one starts from the following fit of the wind-profile to the numerical data of

Janssen(1989)

U0(z) =
u∗

κ
log

(

1+
z

z0

)

,

and determines the τw-profile. For z = 0 one finds

τw(0)

τ
= 1−

z2
b

z2
0
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and therefore the roughness length z0 becomes

z0 =
zb

√

1− τw/τ
→ αCH =

gz0

u2
∗
.

Here, τw is obtained from the wave model, while the background roughness length is given by

zb = αbu2
∗/g with a constant background Charnock parameter αb ≈ 0.0065.

Another advantage of using the logarithmic wind profile is that it provides a simple

parameterization of the wave growth by wind. In order to obtain the growthrate γ one needs to

solve the Rayleigh equation which cannot be solved exactly. Instead, as a starting point a result

from Miles (1993) is used who derived an approximate expression for the growth rate obtained

by means of asymptotic matching.
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Miles (1993) found that

γ/ω0 = εβ
u2
∗

c2
cos2 θ , β =

π

κ2
yc log4

(yc

λ

)

, yc ≤ λ =
1

2
e−γE = 0.281,

where yc = kzc is a dimensionless critical height and ε is the air-water density ratio.

This expression is valid for slow waves only so in order to also have a reasonable

approximation for the long waves parameters were rescaled by replacing λ = 0.281 by λ = 1,

and by replacing π by the factor 1.2. In addition, in the formula for the critical height, the

parameter u∗/c was shifted by a factor zα = 0.008. As a result the following parametrization

for the Miles’ parameter β is used:

β =
1.2

κ2
yc log4 (yc) ,yc ≤ 1,

where

yc = kz0

(

eκ/x −1
)

, x = (u∗/c+ zα)cos(θ −φ),zα = 0.008.
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Validation of the approach

• Show that realistic values of drag over the ocean are produced by comparing with eddy

correlation data collected for the COARE parameterization of the drag (obtained from J.

Edson). In these campaigns winds are below 25 m/s.

• There is also a good agreement of operational results for CD(λ/2) with a parametrization

by Huang which was based on observations from 4 major observational campaigns.
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Figure 3: Comparison of ECMWF drag with obs collected by Huang (2005). CD(λp/2) = Aχa, where

χ = cp/u∗ is the wave age, A = 0.0122 and a =−0.704.
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Figure 4: Average Drag Coefficient as function of wind speed according to averaged empirical data from

Edson et al. and two versions of ecWAM.
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Full Nonlinear theory.

The original approach results in drag coefficients that are in good agreement with well-known

parametrisations of drag against wind speed or wave age that are obtained from observation

campaigns. These observational fits are restricted to wind speeds U10 lower than about 25 m/s.

Despite this good agreement one may question a number of assumptions underlying the

original approach. Here, we discuss the validity of the assumption that the wind profile has a

logarithmic shape.

This assumption can be checked by solving the vertical momentum balance equation (in an

approximate manner) and one can then calculate the ratio W ′′
c /|W

′
c |, which determines the

growth rate of the waves by wind. For a logarithmic wind profile this ratio would be equal to

−1/zc but the solution of the momentum balance equation shows that there are small

deviations in particular for short waves. The consequence is that the wind input source function

depends in a nonlinear way on the wave spectrum.
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Denoting by γ0 the growth rate according to linear theory, nonlinearity is found to renormalise

the growthrate γ of the waves by wind in the following manner

γ = γ0
1+N1

1+N2

where the renormalisation factors N1 and N2 depend on the angular average of the product of

linear growth rate and the wavenumber spectrum. They read

N1 =
k3

εκu∗

∫

dθ γ0 F(k,θ )sin2 θ , N2 =
k3

εκu∗

∫

dθ γ0 F(k,θ ).

The impact of nonlinearity on the growthrate is shown for two wind speeds in the next graph
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Figure 5: Normalised growthrate as function of wavenumber.

Remark: Note that the growth rate, due to the condition yc ≤ 1, both vanishes for very long and very

short waves. The growthrate vanishes for a cut-off wavenumber kc ≈ 1/z0 which, for a wind speed of

15 m/s equals to kc ≈ 800. This assures a finite wave-induced stress.
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WIND-WAVE INTERACTION FOR STRONG WINDS

Extend the theory of wind-wave generation to include effects of gravity-capillary waves

and nonlinearity.

A weak point of the present approach is that the background Charnock parameter αb, which is

connected to the gravity-capillary wave stress, is a constant. This cannot be entirely correct

because it is known that for large wavenumbers (k > kc = 1/z0) the momentum transfer from

wind to waves is quenched with the result that the wave-induced stress from the shorter waves

vanishes. Hence, for given wind speed one should expect that the background Charnock

parameter depends on the roughness length and hence on wave age.
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A model for the short waves

The model for the short wave spectrum (SCAT, Viers model) is based on the one-dimensional

energy balance equation, which is solved under steady state circumstances because the short

waves have a very small response timescale. Also, advection of short wave energy is

disregarded, and the energy balance equation therefore reads

Sin +Snonl +Svisc +Sbr = 0,

where Sin represents the input of wind to waves, Snonl describes three- and four-wave

interactions, Svisc describes viscous dissipation, and Sbr describes dissipation due to

whitecapping.

The energy balance equation is solved as a boundary value problem in wavenumber space by

providing the energy flux from the long to the short waves at a boundary k = k3w which is

basically the wavenumber where three-wave interactions start to become important.
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In order to determine the energy flux at the boundary k = k3w, knowledge of the gravity part of

the wave spectrum is required. The spectrum F(k) at the boundary is given by

F(k3w) =
1

2
αpk−4

3w ,

so that at the boundary the spectrum is given by the Phillips’ spectrum with Phillips parameter

αp which in practice depends on wave age χ and can be obtained from the model spectrum.

According to the JONSWAP observations one finds the scaling relation

αp = Aχ−B,

with A = 0.24 and B = 1. The above scaling law suggests that the Phillips parameter would

continue to increase for decreasing wave age χ , but since waves do have a limiting steepness it

seems likely that also the Phillips parameter is limited.
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To make sure that this limitation is adhered to in the wave model the Phillips parameter is

forced to be below the maximum value αmax = 0.031. It is remarked that the choice for a

limiting steepness and Phillips’ parameter will have important consequences for the behaviour

of the surface stress and wave height for young wind seas.

For wavenumbers higher than k3w we enter the gravity-capillary range so that three-wave

interactions become important. We only discuss a theory for the one-dimensional wavenumber

spectrum F(k). Here, the spectrum is related to the Fourier transform of the autocorrelation of

the surface elevation η , and is normalized in such a way that
∫ ∞

0 kdkF(k) = 〈η2〉, where 〈η2〉

is the wave variance. The wave energy E then follows from

E = ρw
ω2

k
F(k).

Here we shall only consider pure gravity-capillary waves with dispersion relation

ω(k) =
√

gk+Tk3, where g is acceleration of gravity and T is surface tension.

21 .



. Strong coupling of wind and waves .

Wind Input

For the input source function we take

Sin = γinF,

where γin is given by the one-dimensional version of the nonlinear wave growthrate. After

some rearrangment one finds

γin = γ0
1+α1γ0

1+α2γ0

with

α1 = α2/6 and α2 = ∆γ
k3F(k)

κεu∗

while ∆γ is a directional factor determined in an empirical manner. Furthermore,

γ0 = εβωu2
∗/c2 and β is given as before.
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Nonlinear transfer

Following Kitaigorodskii (1983), it is assumed that the nonlinear transfer is a local process in

wavenumber space, and introducing the energy flux Φ(k) one thus has

Snonl =−
1

k

∂

∂ k
Φ(k)

Only three wave interactions will be considered in this talk. On dimensional grounds the

expression for Φ(k) then reads

Φ(k) = α3
c4

vg
B2

where vg is the group velocity ∂ ω/∂ k, B is the angular average of the degree of saturation

(Phillips, 1985),

B = k4F(k)

while α3 gives the strength of the three-wave interactions. Note that α3 should vanish in the

gravity wave regime because three-wave interactions are not possible in the gravity domain.

For this reason k3w is chosen in such a way that it is connected to the
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minimum in the phase velocity c = ω/k. This minimum occurs at k = k0 =
√

g/T and

therefore

k3w = y

√

g

T
,

where the parameter y is typically less than one. A satisfactory choice that was tried is y = 1/2,

but more refined choices have been proposed as well by J. Janssen and H. Wallbrink (1997).
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Exact solution of short-wave energy balance.

Combining now the explicit expressions for the source terms, the energy balance equation

equation becomes

∂

∂ k
Φ(k) = Γ

ω2

k4
B

where the parameter Γ is defined as

Γ = γin − γd

and hence gives the net effect of wind input and dissipation by breaking and viscosity. This

energy balance equation may be solved exactly with the following result for the degree of

saturation

B =

(

vg

α3

)1/2

c−2

{

Φ
1/2
0 +

1

2α
1/2
3

∫ k

k3w

dk
Γ

k2
v

1/2
g

}

where Φ0 is the value of the energy flux at k = k3w.
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The first term of this solution is directly related to the effect of three-wave interactions and is

called the inertial sub-range spectrum. Effects of input and dissipation are represented by the

second term and result in a usually small modification to the inertial sub-range.

A graph of the combined gravity wave spectrum (i.e. JONSWAP) and the short-wave spectrum

is shown for a wind speed of 15 m/s and different wave ages next.
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Figure 6: The wave age dependence (between 5 and 25 in steps of 5) of the degree of saturation spectrum

as function of wavenumber for a wind speed of 15 m/s.
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DETERMINATION OF SURFACE STRESS.

Method

The present model of the sea state now consists of two parts. The spectrum of the long gravity

waves is provided by a wave prediction system while the spectrum of the short waves is given

by the short-wave model. Both models assume that the stress τa or the friction velocity

u∗ =
√

τa/ρa is given and at the same time determine the stress. Assuming steady state

conditions the surface stress is obtained by finding a solution of the conservation of momentum

law at the surface:

τa = τv(u∗)+ τw(u∗),

by means of iteration. In this manner a consistent solution for the spectrum of short and

long-waves is obtained and at the same time a consistent estimate of the stress over growing

wind waves is found. Here, τv = ρaνa∂U0/∂ z, with νa = νa/25, and the wave-induced stress

is given by the sum of the low frequency gravity wave stress
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and the short wave stress,

τw = τw,l f + τw,h f =

∫ ∞

0
kdk

∫ 2π

0
dθ γ P

with wave momentum P = ρwω(k)F(k), while γ is the renormalized growthrate. As we now

have an explicit model for the background roughness (obtained from the short wave stress), the

turbulent stress vanishes at the surface. In fact, one finds for the background roughness length

zb = z0

√

τw,h f

τa
.
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Climatological results

Using operational results obtained with the coupled IFS-ecWAM model one finds that on

average there is a relation between wave age χ and wind speed U10. In the wind speed range of

0 <U10 < 25 it is approximately given by

χ =
35

1+0.005U2
10

and it is assumed that the relation also holds for larger wind speed. The above relation

expresses that, in agreement with one’s expectations, the stage of development of the sea state

generated by low wind speed events is much older than of large wind speed events.

This allows to obtain the average drag coefficient as function of wind speed by assuming that

the gravity waves follow the JONSWAP spectrum with a Phillips parameter depending on wave

age.

Next show results of drag coefficient over a wind speed range of 80 m/s and also results for the

dimensionless background roughness length are shown.
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Figure 7: The climatological dependence of the drag coefficient CD on wind speed U10 in the range of 1 to

80 m/s according to the old and the new approach.
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Figure 8: Climatological Charnock parameter α and background Charnock parameter αb as function of

wind speed U10.
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Pre-operational Results

We implemented the new approach in a test version of the ecWAM model.

First results regarding drag coefficient and mean square slope look encouraging. For strong

winds we see that the nonlinear wind input causes a reduction of CD with wind speed but the

reduction is not as pronounced as in the climatological results. The reason for this is that for

large winds the average wave age is larger than assumed in the climatology.
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Figure 9: The climatological dependence of the drag coefficient CD on wind speed U10 in the range of 1 to

80 m/s according to the old and the new approach.
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Figure 10: Average mean square slope as function of wind speed U10 according to a test version of ecWAM

and a comparison with observations from Cox and Munk.
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Figure 11: Average wave age of windsea as function of wind speed U10 according to a test version of

ecWAM.
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CONCLUSIONS

• Although we know that there has been considerable progress in operational wave

forecasting over the past 25 years that does not mean that we are at the end of the journey.

• There are still a number of important questions to be solved. For example, the wind-wave

interaction approach is extremely simple and might require improvements (essentially it is

now one-dimensional theory as vorticity is conserved, effects of vortex stretching need to

be included). Although I have no details given for this there is now a two-dimensional

version of the wind-wave approach, which includes vortex stretching.

• Nevertheless, we are able to give already fairly accurate estimates of the stress (and

heatflux) over the oceans for wind speeds, say, less than 25 m/s. We now need reliable

estimates for surface stress in hurricane conditions in order to validate models such as the

one presented here.
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Theory and parametrization of heat flux

Extend the theory of wind-wave generation to include thermal stratification .

In the passive scalar approximation the evolution of mean temperature is found to be

∂

∂ t
T0 =

∂

∂ z

{(

Dw + l2

∣

∣

∣

∣

∂U0

∂ z

∣

∣

∣

∣

+δ νz

)

∂

∂ z
T0

}

.

where it is assumed that close to the surface the heat transport is determined by molecular

conduction, which gives the additional diffusivity δ νz.

Assume steady state and introduce the heat flux q∗. Integrating the T-equation one finds

{

Dw + l2

∣

∣

∣

∣

∂U0

∂ z

∣

∣

∣

∣

+δ νz

}

∂

∂ z
T0 = q∗,

which is a differential equation for the air-temperature profile subject to the boundary condition

that T0(z = 0) = TS with TS the sea surface temperature.
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Using a parametrization for the wave diffusion coefficient from Janssen (1997),

Dw = 2κu∗
(z+ zb)(z0 − zb)

z+ z0
,

and solving the differential equation for ∆T = Ta −Ts with boundary condition that ∆T = 0 at

z = 0, gives a logarithmic profile with ’thermal’ roughness zT ,

∆T =
q∗

κu∗
log

(

z

zT

)

with zT = (zν (z0 − zb))
1/2 and zν = δ νz/κu∗.
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Note that by definition τ =CD(10)U2
10 and q∗ =Cq(10)U10∆T10 so that from the wind and

temperature profile one now immediately finds expressions for the drag coefficient CD and the

Dalton number Cq:

CD(10) =

{

κ

log(10/z0)

}2

while

Cq(10) =
κ

log(10/zT )
C

1/2
D

It is straightforward to evaluate these coefficients from ECMWF’s IFS. Results show, in

agreement with Brut et al. (2005), an increase of CD with wind while Cq also increases with

wind but to a lesser extent.

However, result for Cq is in sharp contrast with HEXOS which suggests a constant for the

Dalton number. But, subsequent work by Smedman et al. (2007) (and also Oost et al. (2000))

suggests that Cq increases with wind speed.
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Impact on Hurricane Katrina

I have performed a number of sensitivity experiments on hurricane Katrina to test sensitivity to

the formulation of the heat and moisture flux. The control experiment is the operational IFS

which presently consist of a coupled atmosphere, ocean-wave model. In this model the

following representation of the thermal roughness is used

zT = δ
ν

u∗
, δ = 0.4,0.6.

When substituted in the expression of the Dalton/Stanton number,

Cq =C
1/2
D

κ

log(10/zT )
,

this choice of thermal roughness results in a Dalton/Stanton number that is almost independent

of wind speed (which agrees with HEXOS).

The next viewgraphs show results of a T 511 simulation with the IFS for surface pressure and

significant wave height and the differences between the experiment (with seastate dependent

thermal roughness) and control. Impact is quite substantial.
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Impact on Tropical Circulation

In the past 5-10 years work has been underway to develop a comprehensive coupled

forecasting system (atmosphere, ocean-wave, ocean-circulation, and a sea-ice model). This

configuration produces operational deterministic and ensemble forecasts since June 5, 2018.

In the context of this fully coupled system (CY43R1 with resolution TCO 400, corresponding

to a spatial resolution of 30 km), I now show impact of the new formulation for the heat flux on

the tropical circulation by doing forecasts over a period of one year. The control forecasts were

performed with the heatflux formulation that has almost no wind speed dependence. Results of

these 10-day forecasts are verified against the operational analysis.

Comparing the verification results for e.g. geopotential height shows a significant reduction in

forecast error for the experiment with sea-state dependent thermal roughness.

Earlier experiments with a forecast system with fixed SST (so no dynamic ocean) showed

much smaller impact!
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