The 5th workshop on waves and wave-coupled processes in ECMWF, 10-12 April of 2024

Wave coupling effects in regional and global atmosphere-ocean modeling

Disaster Prevention Research Institute (DPRI), Kyoto University Nobuhito Mori

Collaboration with

T. Shimura, K. Iida (DPRI), J. Ninomiya (Kanazawa U)

R. Mizuta (MRI) and other researchers

KYOTO UNIVERSITY

Contents

- 1. Motivation and background
- 2. Wave coupling effects in regional atmosphere-ocean modeling
- 3. Wave coupling effects in global atmosphereocean modeling
- 4. Ongoing research

Role of air-sea interaction in ocean modeling

Balance between Cd and Ch is also important

- (Top) The air-sea drag coefficient as a function of wind speed for open ocean hurricanes and tropical cyclones that reached Category 4
- (Bottom) observed rate of wind speed as a function of wind speed 1.

UNIVERSITY

Coupling models have been developed, however, physics of interface has not been improved

Atmosphere-Ocean boundary atmospheric side z0

- High speed wind condition (after 2000s)
 - Powell et al. (2003)
 - decreasing Cd over 30m/s
 - Moon et al. (2003), Makin (2005), Babanin and Makin (2008)

$$z_0 = \frac{0.0185u_*^2}{g} \qquad U_{10} \le 12.5$$

$$z_0 = (0.085C_1 - 0.58) \times 10^{-3} \qquad 12.5 < U_{10}$$

$$C_1 = -0.56u_*^2 + 20.255u + 2.45$$

Atmosphere-Ocean boundary atmospheric side z0

• Charnock (1955) : Friction Velocity

$$z_0 = max(\frac{\alpha_{CH}}{g}(u_*)^2, z_{0_{min}}) \quad \alpha_{CH} = 0.018$$

Modified by Fairall et al. (2003)

- Including wave information (after 2000s)
 - Taylor and Yelland (2001)

$$\frac{z_0}{H_s} = A \left(\frac{H_s}{L_p}\right)^B \quad A = 1200, B = 4.5$$

• Oost et al. (2002)

$$\frac{z_0}{L_p} = \frac{C}{\pi} (u_*/C_p)^D \qquad C = 25.0, D = 4.5$$

• Drennan et al. (2005)

$$\frac{z_0}{H_s} = E(u_*/C_p)^F \qquad E = 3.35, F = 3.4$$

NUNIVER ANALAS

Atmosphere-Ocean boundary ocean side TKE flux at sea surface

• TKE flux

• Craig and Banner (1994)
$$K_k \frac{\partial k}{\partial z} = \alpha_{CB} u_*^3$$

• Mellor and Blumberg (2004)

$$K_k \frac{\partial k}{\partial z} = 2\alpha_{CB} u_*^3$$
• Feddersen and Trowbridge (2005)

$$K_k \frac{\partial k}{\partial z} = \alpha_{wdiss} \epsilon_{wdiss}$$

Wave coupling effects in regional atmosphere-ocean modeling

京都大学

防災研究所

KYOTO UNIVERSITY

Revised parameterization of wave induced turbulent kinetic energy for upper ocean surface mixing

Wave breaking induced TKE

 1-D equation for turbulent kinetic energy(TKE) with k-ε model is assumed to be used

$$\frac{\partial k}{\partial t} = \frac{\partial}{\partial z} \left(\frac{K_{\nu}}{\sigma_k} \frac{\partial k}{\partial z} \right) + K_{\nu} S^2 - \varepsilon$$

- Boundary condition at MWL is needed to supply k
- Feddersen and Trowbridge (2005)

$$\frac{K_v}{\sigma_k} \frac{\partial k}{\partial z} = \alpha \overline{\varepsilon_w} \quad \text{at } z=0$$

where $\alpha = 1/4$

 1/4 of wave breaking dissipation will be used for TKE

2o19 Waveworkshop

Field experiments for typhoons since 2009

KYOTO UNIVERSITY

Shirahama Tower Kyoto University

TKE at surface vs Hs

KYO7

()

Result of tuning parameter α

KYOT

Resolution WRF=1km, ROMS, SWAN=3km

KYOTO UNIVERSITY

Changes of temperature at h=100m TC Haiyan 2013

z = 100 m

KYOTO UNIVERSITY

7 November UTC12:00

Time series of min central pressure

Maximum difference of SLP is 8hPa

KYOTO UNIVERSITY

Snapshot: directions, steepness

Snapshot: TKE

TO NOID IN ARA

22

Vertical distribution of TKE along TC center

Difference of heat flux

Snapshot of SST and SW radiation

Impacts of Waves for Typhoon Intensity

PBL Scheme of WRF is MYJ

- Cimaron, Jebi and Faxai are underestimated while Hagisbis is corresponded in coupled model
- The ocean-wave coupled model suppressed the decrease in intensity more than the ocean-only coupled
- Impacts of waves have a small effects in case Cimaron and Hagibis
- Difference of bulk formulas affect Jebi and Faxai KYOTO UNIVERSITY

- Best track (JTWC)
 Best track (JMA)
 WRF
 WRF-ROMS
 WRF-ROMS-WW3-DR
- WRF-ROMS-WW3-DRN WRF-ROMS-WW3

KIUIU UNIVERSIII

• MLD is important

Summary

Parameterization

TKE flux

Cd

Wave coupling effects in global atmosphere-ocean modeling

防災研究所

KYOTO UNIVERSITY

Background

KYOTO UNIVERSITY

Experimental configuration

Climate simulations

- Uncoupled simulations
 - CHA002 ($\alpha = 0.020$)
 - CHA001 ($\alpha = 0.010$)
- Coupled simulations
 - TY2001
 - Wave steepness (Taylor and Yelland 2001)
 - DR2003
 - Wave age (Drennan et al., 2003)

- Period
 - 1990 2014 (25 years)
- Boundary condition
 - Observed sea Surface Temperature (SST) and Sea ice
 HadISST1 (Rayner et al., 2003)
- Reference
 - Reanalysis and observation combined dataset
 - OAFlux and CMAP
 - Reanalysis dataset
 - ERA-Interim and JRA-55

U10 vs Cd (NP)180E-140W, 40N-50N

DPRI-KU

U10 vs Cd Equator (180E-140W, 5S-5N)

KYOTO UNIV____

Climatology: sea surface wind speed

TY2001 - CHA002

Climatology : tropical cyclone

On going research

Estimation of Cd in highspeed wind condition

KYOTO UNIVERSITY

Drifting wave buoy paths Target period: summer in 2021 and 2022

KYOTO UNIVERSITY

Representative observations of cyclone Tropical extreme

Buoys

Wind speed vs Hs

Wind speed vs E0 and Cd

Summary

- Wave coupling effects in regional and global atmosphere-ocean modeling are
 - significant in sea surface climatology
 - marginal in short-term tropical cyclone modeling but not negligible
- Sea surface parameterizations including wave effects are old and need to update
 - Cd, Ch, z0, TKE flux and etc

Atmosphere-Ocean boundary atmospheric side z0

- High speed wind condition (after 2000s)
 - Powell et al. (2003)
 - decreasing Cd over 30m/s
 - Moon et al. (2003), Makin (2005), Babanin and Makin (2008)

$$z_0 = \frac{0.0185u_*^2}{g} \qquad U_{10} \le 12.5$$

$$z_0 = (0.085C_1 - 0.58) \times 10^{-3} \qquad 12.5 < U_{10}$$

$$C_1 = -0.56u_*^2 + 20.255u + 2.45$$

Atmosphere-Ocean boundary atmospheric side z0

• Charnock (1955) : Friction Velocity

$$z_0 = max(\frac{\alpha_{CH}}{g}(u_*)^2, z_{0_{min}}) \quad \alpha_{CH} = 0.018$$

Modified by Fairall et al. (2003)

- Including wave information (after 2000s)
 - Taylor and Yelland (2001)

$$\frac{z_0}{H_s} = A \left(\frac{H_s}{L_p}\right)^B \quad A = 1200, B = 4.5$$

• Oost et al. (2002)

$$\frac{z_0}{L_p} = \frac{C}{\pi} (u_*/C_p)^D \qquad C = 25.0, D = 4.5$$

• Drennan et al. (2005)

$$\frac{z_0}{H_s} = E(u_*/C_p)^F \qquad E = 3.35, F = 3.4$$

NUNIVER ANALAS

Atmosphere-Ocean boundary ocean side TKE flux at sea surface

• TKE flux

• Craig and Banner (1994)
$$K_k \frac{\partial k}{\partial z} = \alpha_{CB} u_*^3$$

• Mellor and Blumberg (2004)

$$K_k \frac{\partial k}{\partial z} = 2\alpha_{CB} u_*^3$$
• Feddersen and Trowbridge (2005)

$$K_k \frac{\partial k}{\partial z} = \alpha_{wdiss} \epsilon_{wdiss}$$

Short term wave impact on AGCM

Summary

Wave roughness impact on climatology

