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Role of air-sea interaction 
in ocean modeling

𝑈𝑈 : wind speed
𝑢𝑢∗: friction vel.
𝜅𝜅 : Karman const.
𝑧𝑧 : height
𝑧𝑧0: roughness 

𝑈𝑈𝑧𝑧 = ⁄𝑢𝑢∗ 𝜅𝜅 ln( ⁄𝑧𝑧 𝑧𝑧0)

𝑢𝑢∗ = �𝜏𝜏 𝜌𝜌

𝜏𝜏 = 𝐶𝐶𝐷𝐷𝜌𝜌𝑈𝑈𝑧𝑧2

Momentum Turbulence
主に砕波による乱れ

𝐾𝐾𝑞𝑞
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧
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Balance between Cd and Ch is also 
important
• (Top) The air-sea 

drag coefficient as a 
function of wind 
speed for open ocean 
hurricanes and 
tropical cyclones that 
reached Category 4 

• (Bottom) observed 
rate of wind speed as 
a function of wind 
speed 1.

Soloviev et al. (2017)JGR



Coupling models have been 
developed,
however,
physics of interface has not 
been improved



Atmosphere-Ocean boundary 
atmospheric side z0
• High speed wind condition (after 2000s)

• Powell et al. (2003) 
• decreasing Cd over 30m/s

• Moon et al. (2003), Makin (2005), Babanin and Makin (2008)



Atmosphere-Ocean boundary 
atmospheric side z0
• Charnock (1955)：Friction Velocity

• Including wave information (after 2000s)
• Taylor and Yelland (2001)

• Oost et al. (2002)

• Drennan et al. (2005)

Modified 
by Fairall et al. (2003)𝛼𝛼𝐶𝐶𝐶𝐶 = 0.018



Atmosphere-Ocean boundary 
ocean side TKE flux at sea surface
• TKE flux

• Craig and Banner (1994)

• Mellor and Blumberg (2004)

• Feddersen and Trowbridge (2005)

𝐾𝐾𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

= 𝛼𝛼𝐶𝐶𝐶𝐶𝑢𝑢∗3

𝐾𝐾𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

= 2𝛼𝛼𝐶𝐶𝐶𝐶𝑢𝑢∗3

𝐾𝐾𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

= 𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝜖𝜖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
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Revised parameterization of wave induced 
turbulent kinetic energy 
for upper ocean surface mixing

11



Wave breaking induced TKE
• 1-D equation for turbulent kinetic 

energy(TKE) with k-ε model is
assumed to be used

• Boundary condition at MWL is 
needed to supply k

• Feddersen and Trowbridge (2005）
𝐾𝐾𝑣𝑣
𝜎𝜎𝑘𝑘

𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

= α𝜀𝜀𝑤𝑤 at z=0

where 𝛼𝛼 = 1/4

• 1/4 of wave breaking dissipation will 
be used for  TKE

2o19 Waveworkshop 12

𝜕𝜕𝑘𝑘
𝜕𝜕𝑡𝑡

=
𝜕𝜕
𝜕𝜕𝑧𝑧

𝐾𝐾𝑣𝑣
𝜎𝜎𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

+ 𝐾𝐾𝑣𝑣𝑆𝑆2 − 𝜀𝜀

Roller
25％

30～50％

Turbulent 
Potential 
Energy

25％



Shirahama Tower
Kyoto University

水温，h=3mADCP
（流速，反
射強度）

波高 海面温度

風向風速，海塩粒子
気温，比湿，
大気圧

水温，h=5m
水温，h=10m

水温，h=15m

水温，h=20m

水温，h=30m
(hは平均水面
からの距離)

水温，h=8.5m

Field experiments for typhoons since 2009

Temp.

23m

30m
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0

0.1

0.2

0.3
follow opposite others

Result of  tuning parameter 𝛼𝛼
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follow<others<opposite

Feddersen and Trowbridge
𝐾𝐾𝑣𝑣
𝜎𝜎𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

= α𝜀𝜀𝑤𝑤

In case “follow”, the correlation coefficient between the inverse 
number of wave steepness  and 𝛼𝛼 is 0.45

-->weak dependency on wave steepness



COAWST Model Setup
Air

WRF

Wave

WW3
SWAN

Sea

ROMS

AOW Model
Warner et al.(2009)

Resolution WRF=1km, ROMS, SWAN=3km



(hPa)






Changes of temperature at h=100m
TC Haiyan 2013

7 November UTC12:00



Time series of min central pressure

Maximum difference of SLP is 8hPa
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Wave direction

wave steepness

Wind direction

Difference of wind 
and wave direction

Snapshot: directions, steepness



Snapshot: TKE
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CB94(wind) FT05(wave)

Wdir(dir. dependent) Wstp(dir. and steepness)



Vertical distribution of TKE along TC center
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Difference of heat flux
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Total difference of heat flux is 6~9%
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Snapshot of SST and SW radiation

W/m2

W/m2C

CB94-FT05

SST SW rad
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Impacts of Waves for Typhoon Intensity

Best track (JTWC)
Best track (JMA)
WRF
WRF-ROMS
WRF-ROMS-WW3-TY
WRF-ROMS-WW3-DRN
WRF-ROMS-WW3-OOST

PBL Scheme of WRF is MYJ

T1821 JEBIT1820 CIMARON T1915 FAXAI T1919 HAGIBIS 

 Cimaron, Jebi and Faxai are underestimated while Hagisbis is corresponded
in coupled model

 The ocean-wave coupled model suppressed the decrease in intensity more
than the ocean-only coupled

 Impacts of waves have a small effects in case Cimaron and Hagibis
 Difference of bulk formulas affect Jebi and Faxai
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Impacts of Waves for Typhoon Intensity PBL Scheme of WRF is MYJ

T1821 JEBI T1919 HAGIBIS 

Best track (JTWC)
Best track (JMA)
WRF
WRF-ROMS
WRF-ROMS-WW3-TY
WRF-ROMS-WW3-DRN
WRF-ROMS-WW3-OOST



Summary
• MLD is important

Parameterization

TKE flux 

Cd Wave
field

TKE injection
Asymmetric mixing 

under TC 

Shallower MLD
(<15m)
Warmer SST (<0.5C)

Increase heat flux 
(<40W/m2)

Intensity TC
(<10hPa)
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Wave coupling effects 
in global atmosphere-ocean 
modeling



MRI-AGCM3.2
(Mizuta et al., 2012)

WAVEWATCH III 
ver.4.18

(Tolman, 2014)

Roughness length
(𝑧𝑧0𝑚𝑚) 

Wind (𝑈𝑈10)

・Momentum
𝑢𝑢∗2 = 𝑪𝑪𝒅𝒅𝑈𝑈2

・Heat
𝑤𝑤𝑤𝜃𝜃 = 𝑪𝑪𝒉𝒉 𝑈𝑈 𝜃𝜃𝑎𝑎 − 𝜃𝜃𝑔𝑔

Bulk transfer relation 

Background



Experimental configuration
Climate simulations
• Uncoupled simulations

• CHA002 (α = 0.020)
• CHA001 (α = 0.010)

• Coupled simulations
• TY2001  

• Wave steepness  (Taylor and 
Yelland 2001)

• DR2003  
• Wave age (Drennan et al., 2003)

• Period
• 1990 – 2014 (25 years)

• Boundary condition
• Observed sea Surface 

Temperature (SST) and Sea ice
• HadISST1 (Rayner et al., 2003)

• Reference
• Reanalysis and observation 

combined dataset
• OAFlux and CMAP 

• Reanalysis dataset
• ERA-Interim and JRA-55



U10 vs Cd
(NP)180E-140W, 40N-50N

Shimura et al. (2017) JGR



U10 vs Cd
Equator (180E-140W, 5S-5N)

Shimura et al. (2017) JGR



Climatology: sea surface wind speed
TY2001 – CHA002

[m/s]

TY2001 – CHA002



Climatology 
sea surface wind speed

OAFlux
ERAint

JRA55

CHA002
TY2001

CHA001

DR2005

DR2005
TY2001

CHA001
OAFlux

CHA002
JRA55ERAint

[m/s] Shimura et al. (2017) JGR



Climatology : tropical cyclone
Uncoupled: CHA002

TY2001 – CHA002 [#/yr]



防
災
研
究
所

On going research
Estimation of Cd in highspeed wind 
condition
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Drifting wave buoy paths 
Target period: summer in 2021 and 2022

Kyoto Univ. deployed buoys

Sofar Ocean provided data

Small GPS wave buoy
SPOTTER (Sofar Ocean)
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Wind speed vs Hs
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Wind speed vs E0 and Cd

53

u* Saturation
Cd Reduction



Summary
• Wave coupling effects in regional and global 
atmosphere-ocean modeling are 

• significant in sea surface climatology 
• marginal in short-term tropical cyclone modeling but 

not negligible
• Sea surface parameterizations including wave 
effects are old and need to update

• Cd, Ch, z0, TKE flux and etc



Role of air-sea interaction 
in ocean modeling F

F’=μmg

Solid material

Wind U10

τ=CDρU2

Drag coef.

air (ρ)

Sea surface drag coefficient 
is not a constant value

2015/12/12



Atmosphere-Ocean boundary 
atmospheric side z0
• High speed wind condition (after 2000s)

• Powell et al. (2003) 
• decreasing Cd over 30m/s

• Moon et al. (2003), Makin (2005), Babanin and Makin (2008)



Atmosphere-Ocean boundary 
atmospheric side z0
• Charnock (1955)：Friction Velocity

• Including wave information (after 2000s)
• Taylor and Yelland (2001)

• Oost et al. (2002)

• Drennan et al. (2005)

Modified 
by Fairall et al. (2003)𝛼𝛼𝐶𝐶𝐶𝐶 = 0.018



Atmosphere-Ocean boundary 
ocean side TKE flux at sea surface
• TKE flux

• Craig and Banner (1994)

• Mellor and Blumberg (2004)

• Feddersen and Trowbridge (2005)

𝐾𝐾𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

= 𝛼𝛼𝐶𝐶𝐶𝐶𝑢𝑢∗3

𝐾𝐾𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

= 2𝛼𝛼𝐶𝐶𝐶𝐶𝑢𝑢∗3

𝐾𝐾𝑘𝑘
𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

= 𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝜖𝜖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤



Short term wave impact on 
AGCM



Summary

Wave roughness impact 
on climatology
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