

# Wave Breaking Probability in Highly Directional Seas

**James N. Steer**<sup>1</sup>, M. L. McAllister<sup>1</sup>, J. Bidlot<sup>2</sup>, T. van den Bremer<sup>3</sup>, and T. A. A. Adcock<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK

 $<sup>^2</sup>$ European Centre for Medium Range Weather Forecasts, Reading, UK

<sup>&</sup>lt;sup>3</sup>Department of Civil Engineering and Geosciences. TU Delft. Stevinweg 1, 2628 CN Delft. The Netherlands

# Wave Breaking in Crossing Seas



"[In crossing seas] breaking becomes less crestamplitude limiting for sufficiently large crossing angles and involves the formation of nearvertical jets"

M. L. McAllister et al., 2019

### Contents











### Motivation



Breaking probability an intermediate step on the way to breaking dissipation

How does strong directionality affect prevalence of breaking events?

Current models assume a consistent amount of directionality or/ and constant threshold values

## Directionality I





## Directionality II





$$\Omega_0 = 1 - \left| \frac{\iint S(f, \theta) e^{i\theta} \, df \, d\theta}{E} \right|$$

$$L_c^2 = \frac{(m_{20} + m_{02}) - \sqrt{(m_{20} - m_{02})^2 + 4m_{11}^2}}{(m_{20} + m_{02}) + \sqrt{(m_{20} - m_{02})^2 + 4m_{11}^2}}$$

### Assumptions



- Gaussian distributed free surface
- Slope-limited wave breaking
- Continuous and independent breaking events

### Framework







### Framework: Maximum Slope







### Framework: Maximum Slope





McAllister, M., et al.: Three-dimensional wave breaking. Submitted

### Framework: Slope Distribution







### Framework: Slope Distribution



 $(2 \cdot 1 \cdot 25)$ 



Longuet-Higgins, M. S., 1957: Statistical analysis of a random, moving surface. Philos. T. R. Soc. S.-A,

### Framework: Breaking Prob.







# Slope Distribution Crossing Performance







# Slope Distribution Spreading Performance







# **Breaking Probability**





### Assessment







### Assessment





### **Assumptions Revisited**



#### Gaussian distributed free surface

Applicability to intermediate/shallow waters?

Effect of bound harmonics on slope distribution?

#### Slope-limited wave breaking

Could this framework be applied with a kinematic criterion?

#### Continuous and independent breaking events

How does wavetrain modulation affect this?

### Conclusions and Future Work



- Framework based on experiments to determine slope threshold and PDF of slopes to find exceedance proportion
- Framework shows decrease in breaking probability for all types of directionality
- Framework able to consolidate measured and predicted breaking probability of various directional distributions, 0.5 scaling
- Higher-order slope PDF
- Stronger crossing angle validation experiments



### **Questions and Comments**

jamesnicholassteer@gmail.com

James N. Steer, M. L. McAllister, J. Bidlot, T. van den Bremer, and T. A. A. Adcock

# Analysis





# Analysis



