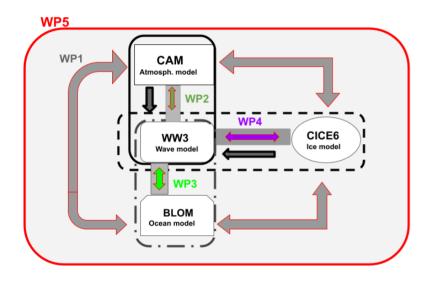
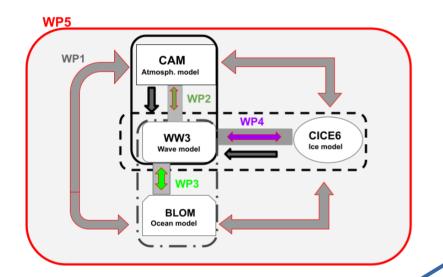

Effects of atmosphere-surface ocean waves two-way coupling on the simulated climatology of the North Atlantic

Thomas Toniazzo (NORCE and Bjerknes Centre, Bergen, Norway)

Fifth workshop on waves and wave-coupled Processes ECMWF, Reading, 10 April 2024

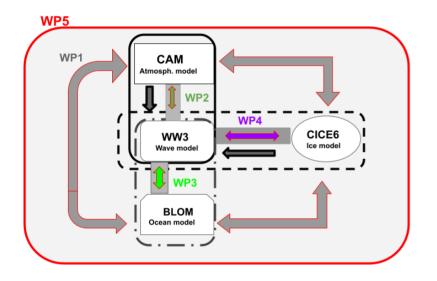

The "Making Waves" collaboration

Ana Carrasco, Ali Alfatih, Mats Bentsen, Øyvind Breivik, Kai Christensen, Jens Debernard, Thea Ellevold, Alexi Nummelin, Thomas Toniazzo (ackn. Mariana Vertenstein)


- Drawing from different experience in
 - Operational forecasting
 - Climate simulations
- Combining existing expertise on waves, ocean, sea-ice, and atmosphere
- Include wave effects in climate simulations
 - Air-sea fluxes
 - Ocean mixing and mechanical forcing
 - Sea-ice growth and break-up

Ocean waves and climate

- Operational use of surface wave models mature in weather forecasting
- Main documented effect is the enhanced barometric filling of strong depressions due to increased surface friction
- climate simulations aimed to understand *potential* effects associated with
 - Persistent changes in dsitribution of air-sea fluxes and diabatic heating of atmosphere
 - Ocean stirring and mixed-layer deepening
 - → WRS on and break-up of marginal ice
- Coupling might amplify individual effects


Ocean waves and climate

This talk

- Operational use of surface wave models mature in weather forecasting
- Main documented effect is the enhanced barometric filling of strong depressions due to increased surface friction
- climate simulations aimed to understand *potential* effects associated with
 - Persistent changes in dsitribution of air-sea fluxes
 and diabatic heating of atmosphere
 - Ocean stirring and mixed-layer deepening
 - WRS on and break-up of marginal ice
- Coupling might amplify individual effects

Ocean waves and climate

Also in this workshop: Øyvind Breivik (MET Norway), Thu 9am Alfatih Ali (MET Norway), poster

- Operational use of surface wave models mature in weather forecasting
- Main documented effect is the enhanced barometric filling of strong depressions due to increased surface friction
- climate simulations aimed to understand *potential* effects associated with
 - Persistent changes in dsitribution of air-sea fluxes and diabatic heating of atmosphere
 - → Ocean stirring and mixed-layer deepening
 - → WRS on and break-up of marginal ice
- Coupling might amplify individual effects

COARE 3 (Fairall et al. 2013) + Drennan et al. (2005)

COARE 3 (Fairall et al. 2013) + Drennan et al. (2005)

$$\begin{cases} u_{*}^{2} = C_{D} [U(z) - U_{s}]^{2} \\ C_{D} = \frac{\kappa^{2}}{[\Psi(z + z_{0}) - \Psi(z_{0})]^{2}} \\ z_{0} = a \frac{u_{*}^{2}}{g} + b \frac{\nu}{u_{*}} \end{cases}$$

"Charnock parameter"

$$u_{*}^{2} = C_{D} [U(z) - U_{s}]^{2}$$

$$C_{D} = \frac{\kappa^{2}}{[\Psi(z + z_{0}) - \Psi(z_{0})]^{2}}$$

$$z_{0} = a \frac{u_{*}^{2}}{g} + b \frac{\nu}{u_{*}}$$

$$\begin{cases} u_{*}^{2} = C_{D} [U(z) - U_{s}]^{2} \\ C_{D} = \frac{\kappa^{2}}{[\Psi(z + z_{0}) - \Psi(z_{0})]^{2}} \\ z_{0} = a \frac{u_{*}^{2}}{g} + b \frac{\nu}{u_{*}} \\ a = \hat{a} [1 - u_{w}^{2}/u_{*}^{2}]^{-1/2} \\ u_{w}^{2} = g \int d\omega d\theta \gamma' N k \\ \gamma' = \gamma'(z_{0}, u_{*}) \end{cases}$$

$$u_{*}^{2} = C_{D} [U(z) - U_{s}]^{2}$$

$$C_{D} = \frac{\kappa^{2}}{[\Psi(z + z_{0}) - \Psi(z_{0})]^{2}}$$

$$z_{0} = a \frac{u_{*}^{2}}{g} + b \frac{\nu}{u_{*}}$$

$$\begin{aligned}
 u_{*}^{2} &= C_{D} [U(z) - U_{s}]^{2} \\
 C_{D} &= \frac{\kappa^{2}}{[\Psi(z + z_{0}) - \Psi(z_{0})]^{2}} \\
 z_{0} &= a \frac{u_{*}^{2}}{g} + b \frac{\nu}{u_{*}} \\
 a &= a [1 - u_{w}^{2}/u_{*}^{2}]^{-1/2} \\
 u_{w}^{2} &= g \int d\omega d\theta \gamma' N k \\
 \gamma' &= \gamma'(z_{0}, u_{*})
\end{aligned}$$

QL theory of Janssen (1989, 1991); Varlas et al. (2018)

$$\begin{aligned} u_{*}^{2} &= C_{D} [U(z) - U_{s}]^{2} \\ C_{D} &= \frac{\kappa^{2}}{[\Psi(z + z_{0}) - \Psi(z_{0})]^{2}} \\ z_{0} &= a \frac{u_{*}^{2}}{g} + b \frac{v}{u_{*}} \end{aligned}$$

$$u_*^2 = C_D [U(z) - U_s]^2$$

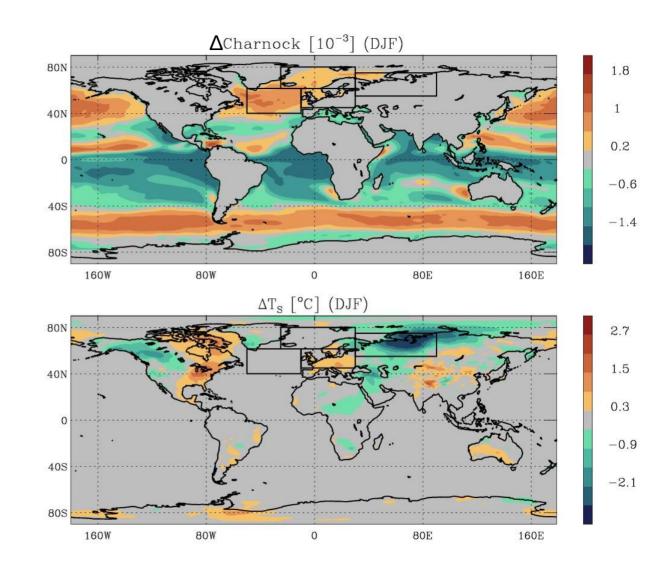
$$C_D = \frac{\kappa^2}{[\Psi(z + z_0) - \Psi(z_0)]^2}$$

$$z_0 = a \frac{u_*^2}{g} + b \frac{\nu}{u_*}$$

$$a = \hat{a} [1 - u_w^2 / u_*^2]^{-1/2}$$

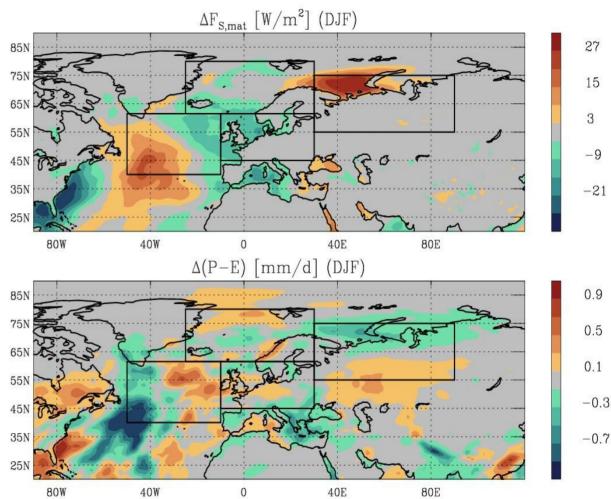
$$u_w^2 = g \int d\omega d\theta \gamma' N k$$

$$\gamma' = \gamma'(z_0, u_*)$$

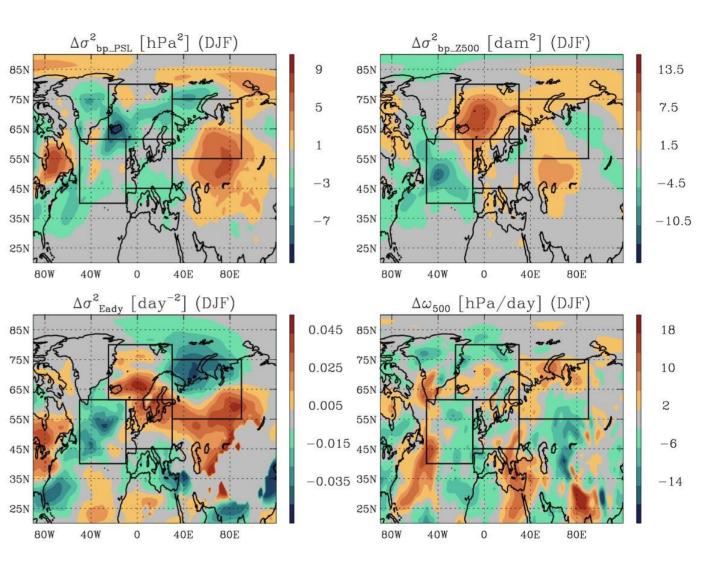

$$\begin{cases} u_{*}^{2} = C_{D}[U(z) - U_{s}]^{2} \\ C_{D} = \frac{\kappa^{2}}{[\Psi(z + z_{0}) - \Psi(z_{0})]^{2}} \\ z_{0} = a \frac{u_{*}^{2}}{g} + b \frac{\nu}{u_{*}} \\ \end{bmatrix} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \approx \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-1/2}} \\ = \frac{\int d \phi C_{D} U^{2} \otimes \text{const}}{g + U \sim C_{D}^{-$$

Configuration of the numerical experiments

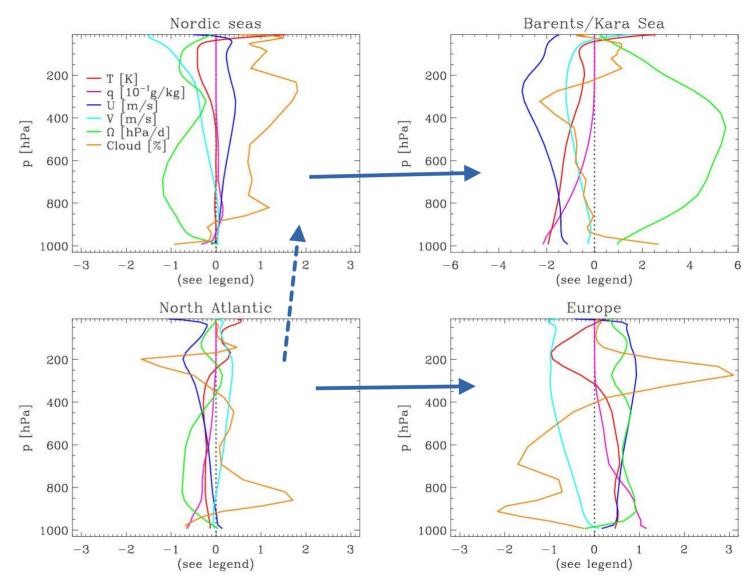
- development version of CAM-CLUBB (based on tag cam6_3_41), FV dycore, 32 levels
- WW3 dev (tag dev/unified_0.0.2) on tn066 grid
- prescribed
 - SSTs
 - sea-ice concentration
 - atmospheric composition
- Repeating annual cycle from observed monthly climatology of the decade around year 2000
- 10 years after first year spin-up
- 6 experiments from 3 control simulations (f09, f09 de-tuned, f19)


Effect of two-way (wave-Charnock) coupling on the simulated DJF climatology

- "Δ" = two-way minus oneway coupling
- Warmer in Europe
- Colder over Barents and Kara seas


Wave-Charnock and simulated DJF climatology

- Increased evaporation
 over North Atlantic
- Increased precipitation downstream


Wave-Charnock and simulated DJF climatology

- 2-6 day PSL variance decreases over ocean
- But overall baroclinic activity increases downstream of central North Atlantic
- mid-tropospheric descent over Barents and Kara seas

The state changes in Europe and Barents/Kara Seas consistent with downstream effects of diabatic warming over ocean

- Westerlies and moistening over Europe
- Descent-drying and radiative cooling over Barents/Kara region

Teleconnections!

Effect of wave-Charnock

Effect of parameter (de-)tuning

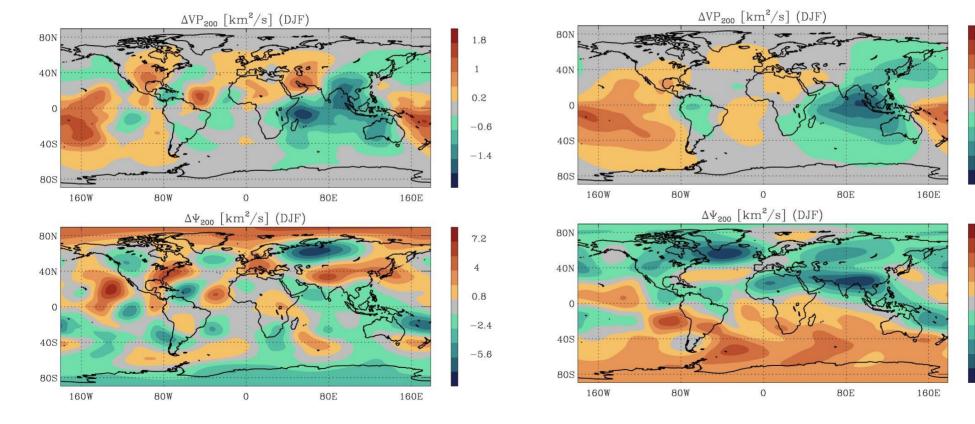
6.3

3.5

0.7

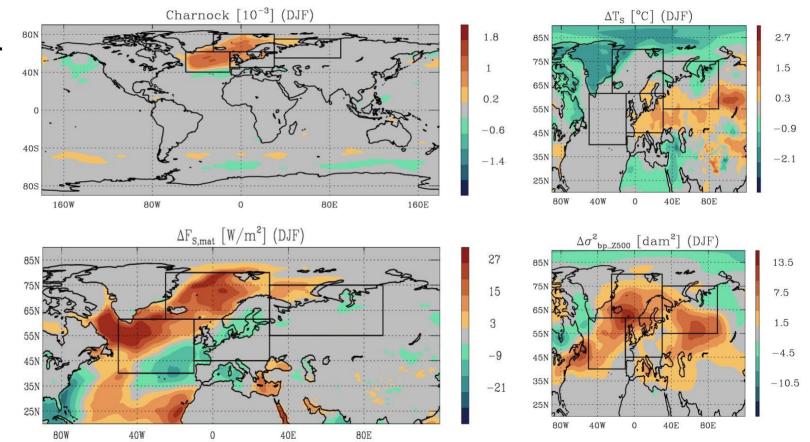
-2.1

-4.9

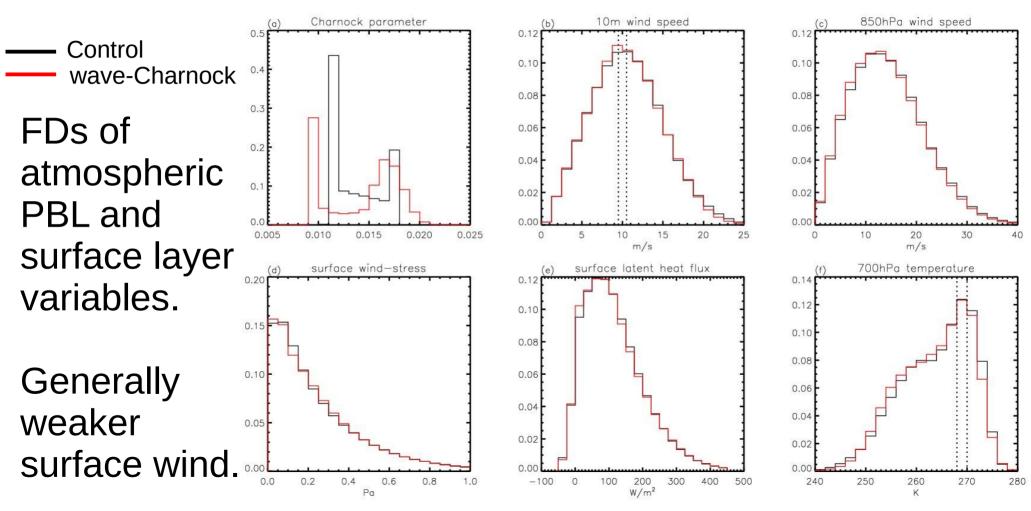

13.5

7.5

1.5

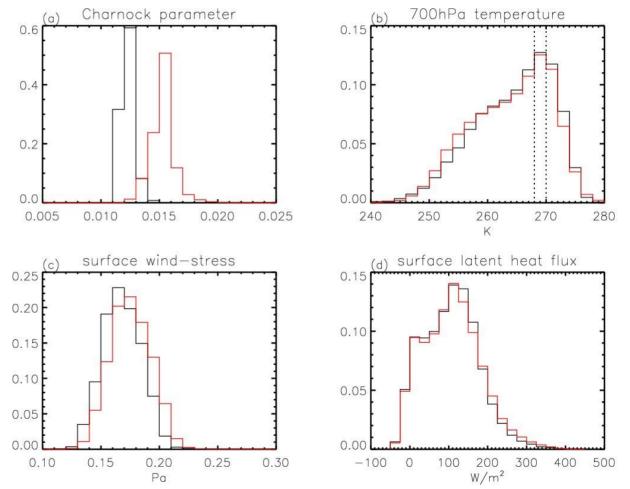

-4.5

-10.5



Regional two-way coupling experiment (NA and Nordic Seas only)

Impacts over the NA. Nordic Seas and Europe are qualitatively similar, and larger


Sub-synoptic scales in the North Altantic

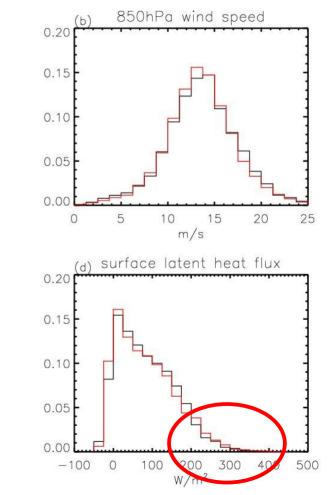
Sub-synoptic scales in the North Altantic

Control
 wave-Charnock

Under same wind, larger windstress and latentheat flux.

Sub-synoptic scales in the North Altantic

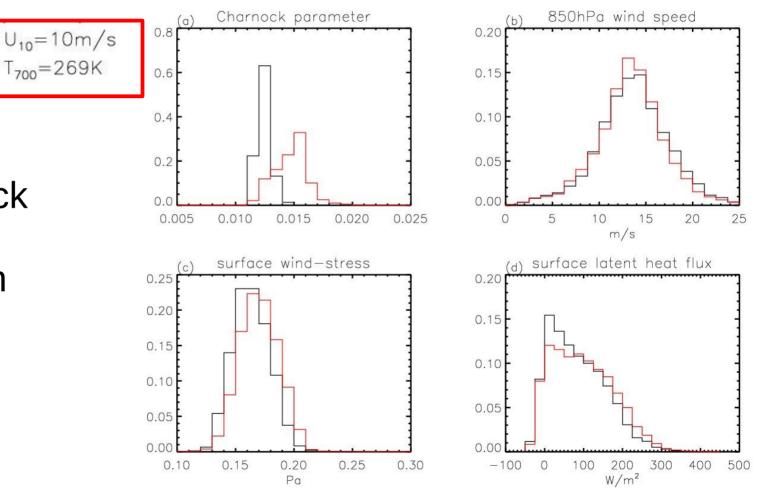
0.8


Charnock parameter

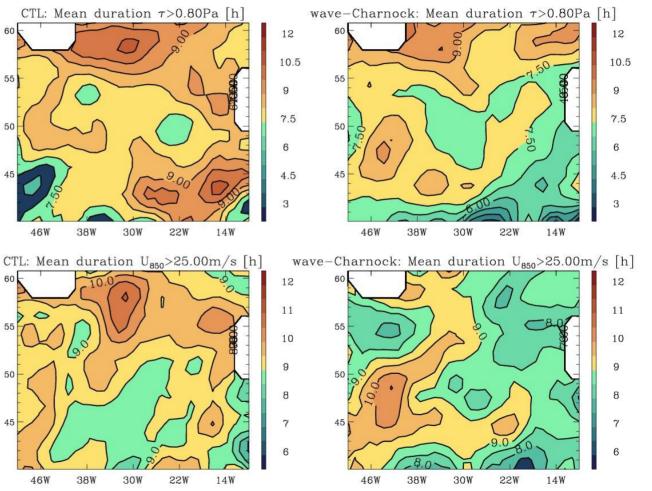
Pa

0.025

0.30


 $U_{10} = 10 \text{m/s}$ Control T₇₀₀=269K wave-Charnock 0.6 0.4 Given similar PBL 0.2 conditions, wind-0 stress is larger 0.010 0.020 0.005 0.015 and latent-heat surface wind-stress 0.25 flux still has a 0.20 long "tail". 0.15 $\int d \phi C_D U^2 \approx const$ 0.10 $\Rightarrow U \sim C_D^{-1/2}$ 0.05 $F_{lat} \sim C_H U \Delta \theta_s \sim C_D^{1/2}$ 0.00 0.10 0.15 0.20 0.25 $\Psi convex \Rightarrow dC_D/dz_0 > 0$

Sub-synoptic scales in the North Atlantic


Control
 wave-Charnock

The regional wave-Charnock experiment shows a much larger effect.

Sub-synoptic scales in the North Atlantic

There is some compensation between increased windstress and "storm" duration.

conclusions

- Two-way atmosphere-wave coupling result in robust winter warming in Europe, enhanced storminess in the Nordic Seas, and cold conditions over the Barents/Kara Seas
- These effects appear to be attributable to increased diabatic enhancement of storminess in the North Atlantic
- Downstream effect (central Asia, Siberia and Arctic) are less robust, e.g. dependent on background model climatology
- Super-imposed are tropical-mid-latitude teleconnections dependent on remote changes in wind-stress distribution, which tend to warm the Arctic; this is climate-dependent and in low-resolution simulations it can be the dominant effect